Novel Escherichia coli RF1 mutants with decreased translation termination activity and increased sensitivity to the cytotoxic effect of the bacterial toxins Kid and RelE

نویسندگان

  • Elizabeth Diago-Navarro
  • Liliana Mora
  • Richard H Buckingham
  • Ramón Díaz-Orejas
  • Marc Lemonnier
چکیده

Novel mutations in prfA, the gene for the polypeptide release factor RF1 of Escherichia coli, were isolated using a positive genetic screen based on the parD (kis, kid) toxin-antitoxin system. This original approach allowed the direct selection of mutants with altered translational termination efficiency at UAG codons. The isolated prfA mutants displayed a approximately 10-fold decrease in UAG termination efficiency with no significant changes in RF1 stability in vivo. All three mutations, G121S, G301S and R303H, were situated close to the nonsense codon recognition site in RF1:ribosome complexes. The prfA mutants displayed increased sensitivity to the RelE toxin encoded by the relBE system of E. coli, thus providing in vivo support for the functional interaction between RF1 and RelE. The prfA mutants also showed increased sensitivity to the Kid toxin. Since this toxin can cleave RNA in a ribosome-independent manner, this result was not anticipated and provided first evidence for the involvement of RF1 in the pathway of Kid toxicity. The sensitivity of the prfA mutants to RelE and Kid was restored to normal levels upon overproduction of the wild-type RF1 protein. We discuss these results and their utility for the design of novel antibacterial strategies in the light of the recently reported structure of ribosome-bound RF1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Basis for Translation Termination on a Pseudouridylated Stop Codon.

Pseudouridylation of messenger RNA emerges as an abundant modification involved in gene expression regulation. Pseudouridylation of stop codons in eukaryotic and bacterial cells results in stop-codon read through. The structural mechanism of this phenomenon is not known. Here we present a 3.1-Å crystal structure of Escherichia coli release factor 1 (RF1) bound to the 70S ribosome in response to...

متن کامل

Expression of tolC and organic solvent tolerance of Escherichia coli ciprofloxacin resistant mutants

AcrAB-TolC is a major efflux pump in Escherichia coli. It was reported that tolC is overexpressed and involves in improving the organic solvent tolerance level in Escherichia coli marR mutants that are resistant to several antibiotics, such as ciprofloxacin. Low and intermediate levels resistance did not improve organic solvent tolerance. Thus, in this descriptive-experimental study it was deci...

متن کامل

Expression of tolC and organic solvent tolerance of Escherichia coli ciprofloxacin resistant mutants

AcrAB-TolC is a major efflux pump in Escherichia coli. It was reported that tolC is overexpressed and involves in improving the organic solvent tolerance level in Escherichia coli marR mutants that are resistant to several antibiotics, such as ciprofloxacin. Low and intermediate levels resistance did not improve organic solvent tolerance. Thus, in this descriptive-experimental study it was deci...

متن کامل

The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance.

In Escherichia coli, expression of the RelE and HipA toxins in the absence of their cognate antitoxins has been associated with generating multidrug-tolerant "persisters." Here we show that unlike persisters of E. coli, persisters of Mycobacterium tuberculosis selected with one drug do not acquire cross-resistance to other classes of drugs. M. tuberculosis has three homologs of RelE arranged in...

متن کامل

Thermodynamic and Kinetic Insights into Stop Codon Recognition by Release Factor 1

Stop codon recognition is a crucial event during translation termination and is performed by class I release factors (RF1 and RF2 in bacterial cells). Recent crystal structures showed that stop codon recognition is achieved mainly through a network of hydrogen bonds and stacking interactions between the stop codon and conserved residues in domain II of RF1/RF2. Additionally, previous studies su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular Microbiology

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2008